
(en)coded poetry:
read, write, execute

(en)coded poetry: read, write, execute
http://encoded.codetext.net

Benjamin Laird

Bachelor of Engineering (Robotics and Mechatronics)

Bachelor of Applied Science (Computer Science and Software

Engineering)

Diploma of Professional Writing and Editing

Submitted in partial fulfilment for the requirements for the

degree of Bachelor of Media and Communication (Honours)

October 2012

Dr Jessica Wilkinson

School of Media and Communications

RMIT University

Contents

v Abstract

vii Statement of Authorship

ix Acknowledgements

1 Introduction

5 Chapter 1. The Reading Event and the
 Extranoematic Event

13 Chapter 2. (De)coding Code

25 Chapter 3. Patrick Jones: Hypertextual
 Freedragging Mesostics

33 Chapter 4. Mez: Paratextually Programmed
 Mezangelle

39 Chapter 5. Jason Nelson. 3-Dimensional Page
 in Dreamaphage

47 Chapter 6. Programmable Poetry and Writing
 Code That (Works)

63 Conclusion

67 Works Cited

v

Abstract

As a programmer and a poet who writes in both print and

programmable media I wanted to understand how the code

could be read and written in programmable poetry. I recognised

writing the code as a separate activity yet necessary to the

poetic expression of my programmable works. How do I code

the poetic? To answer this question I first investigated the

reading of the expression of executed code in programmable

works. I then explored the ways in which code was discussed in

regards to digital works. With these understandings of code I

applied them to case studies of three poets working in different

forms. To explore these modes in my own work, I developed

ten constrained poetic pieces: five print-based poems and five

HTML-based poems.

vii

Statement of Authorship

I certify that except where due acknowledgement has been

made, the work is that of the author alone; the work has not

been submitted previously, in whole or in part, to qualify for any

other academic award; the content of the exegesis is the result of

the work which has been carried out since the official research

program; and any editorial work, paid or unpaid carried out by a

third party is acknowledged.

Benjamin Laird

ix

Acknowledgements

I would like to thank my supervisor Jessica Wilkinson for always

having the time to discuss even the smallest parts of the project,

the conversations about poetry, and the invaluable advice.

Thanks to Honours Program Director Adrian Miles for all

the research strategies and for those few crucial discussions

about the project. To the Nonfiction Lab tutor David Carlin for

guaranteeing that the Monday lab would always be fascinating.

To the other honours students, thank you for being around and

creating an ever-enjoyable research environment.

Thank you to Albert for always being there.

Most importantly, thank you to Jacinda for the boundless

support, limitless encouragement, and for listening to every new

turn in the project.

1

(en)coded poetry: read, write, execute

Introduction

Code is poetry

WordPress

Code is akin to innovative poetry in the physicality of its

interweaving of text, metatext, and erased text.

Loss Pequeño Glazier, Digital Poetics

Early in 2012, I was on a panel at the Sydney Writers’ Festival

titled “Is code poetry?” It was a discussion that examined

the possibility of “coding” as a creative form, and questioned

whether code could, or indeed did, fit the definition of “poetry”.

Code, I argued, was not poetry. There is a complicated

relationship between the two, however, as code may not be by

definition poetry, but both are made by “writing”. Formally,

expressions of written code share qualities with poetry. Both are

commonly measured by the line, structured to produce meaning

or meaningful execution, and, as another of the panellists1

remarked, code, like poetry, can be beautiful and evocative.

Code also suggests or creates a world outside of itself, and it

produces, in its execution, a second form, which is what most

people commonly experience, running software. In a similar

way, poetic language stands in for more concrete expressions

1 Mark Pesce, co-creator of VRML, described a job he had poring
through the source code of various games and every so often coming
across a beautifully written piece of code.

2

Benjamin Laird

of language; it evokes through metaphor, wordplay, textual

experimentation, rhythm and shape.

“Code is poetry” is then a useful metaphor that allows those who

understand code to understand something about poetry and for

those who understand poetry to understand something about

code. While metaphors generally help to provide an outline

of what is being referenced, they simultaneously obfuscate the

differences. A webpage, for instance, is a convenient conceptual

metaphor that uses the print page as way to understand a visual

rendering at a specific URL, but a webpage is not a page. The

material differences between webpages and pages extend to

how they are read and how they are written: readers do not

turn webpages and they do not write webpages at their interface

level. Additionally, inherent to a webpage is the ability to view

the written text, or, in other words, the unrendered content. In

keeping with the metaphor, there would be no reason to view

the source as readers do not view the source of a page (as much

as they might want to). Likewise, if the metaphoric direction

is reversed and instead the printed page is understood as a

webpage, it may never be turned.

Poetry in programmable media challenges the context of code

in poetic forms. The code in programmable media is most

often realised not at the inscription of the code but at the

expression; that is, at the interface. Code, if considered unique,

cannot merely be an extension of the poetic. Its significance to

producing the poetic is important, however. How then can we

3

(en)coded poetry: read, write, execute

read code in poetry? Is it only read in its expression, its executed

form?

Importantly for my own practice of writing both print and

programmable poetry, if code in poetry is unique, what is the

relationship between the code and the poetry? I recognise coding

as a separate activity but in what ways do they differ, and,

more significantly, how could they be similar? In an attempt

to answer these questions, chapters one and two will look at

the ways poetry in programmable media can be read and then

discusses code both in programmable poetry and in codeworks.

In chapters three to five, these readings will be applied to case

studies of Patrick Jones, Mez (Mary-Anne Breeze) and Jason

Nelson, and which will be followed by a discussion of my own

writing in print and programmable media.

4

Benjamin Laird

5

(en)coded poetry: read, write, execute

C H A P T E R 1

The Reading Event and the
Extranoematic Event

Before reading this poem,

read another poem.

Read another and another.

Then tell me what you think the difference is.

Michael Leong, “Poem”

In The Act of Reading Wolfgang Iser describes the literary work

as having two poles. On one side he places the author’s text (the

artistic) and on the other side the reader (the aesthetic realisation

of the text). According to Iser, the literary work “cannot be

identical with the text or with the concretization, but must be

situated between the two” (21).

Reading, for Iser, is the interaction between text and reader,

as it is for all reader-response theorists2. For these theorists,

meaning, in the reading process is not a one-way transmission

from text to reader, but instead is produced through “a dynamic

2 Reader-response theorists such as Louise Rosenblatt and Han Robert
Jaus.

6

Benjamin Laird

interaction between text and reader” (107). A problem of the

process of reading, however, is that not all the text is perceived

at once; this is what distinguishes a text from actual objects as

those objects can be “viewed or at least conceived as a whole”

(108). From this observation, Iser concludes that we stand outside

given objects but the reader’s viewpoint moves within the literary

text. When reading, the reader can only perceive a part of the

text at any given time. The difference, Iser writes, is that the

aesthetic object cannot, therefore, be solely identified with the

way it appears at a given moment of reading. The fragmentary

development of the process of reading must then be synthesised

by the reader. Initially the synthesis of these manifestations is to

build consistency for the reader in the illusion-making. This is a

consistency held together by techniques such as narration.

For the text to operate as an event, Iser suggests that the elements

that the reader pushes to the side in the consistency-building

of the text are brought with it; as a result, the reader holds the

elements in her mind while reading, rather than discarding

them along the way. The disruptive virtual possibilities come to

the fore generating a “conflict” that creates an oscillation that

for Iser constitutes “the event” (128). In addition to this process

meaning is evoked as a result of the “gaps” in the text where the

reader fills in what she perceives as “missing”. Consequently,

what is not written creates meaning for the reader alongside what

is written; in dialogue, Iser theorises, “[w]hat is said only appears

to take on significance as a reference to what is not said” (168).

As Aarseth writes in Cybertext many theorists have suggested that

these gaps imply a form of participation with the text that can be

seen to materialise when readers must make physical choices in

a text (110). For example, when reading a hypertextual sequence

7

(en)coded poetry: read, write, execute

the act of making a choice builds on the narrative. However,

Aarseth argues that this is a misreading of logical techniques

as strategic filters for narrative development. Expanding on

poststructuralism and reader-oriented literary theories, Aarseth

builds a framework and typology for forms of literature he calls

ergodic, where “nontrivial effort is required to allow the reader to

traverse the text” (1). For the nontrivial to make sense, Aarseth

writes, there must be a nonergodic literature in which the only

extranoematic activities required are those that we expect from

traditional forms of book reading, such as eye movement and

page turning. This view of reading, Aarseth states, suggests a

further integrated reader than even that referred to in traditional

reader-response theory as, “[t]he performance of the reader [the

reader-response reader] takes place all in his head, while the user

of cybertext performs in an extranoematic sense” (1).

Aarseth contends that a cybertext is a form of ergodic literature

that “involve[s] calculations in their production of scriptons”,

where scriptons “are what an “ideal reader” reads by strictly

following the linear structure of the output” and are formed

through combinations of textons (62). In Montfort’s “The

Purpling” each HTML page acts as a texton, while clicking

on a line within individual pages introduces a new HTML

page and so forms a path through the work; a scripton. The

various combinations of textons constitute each separate

scripton. For programmable cybertexts in computational

and networked environments the material properties of those

environments change the storage and presentation of those texts.

Furthermore, programmable media potentially extends the

reader’s relationship with the text through techniques natural

to the media such as user functions (clicking a mouse, using the

keyboard) or kinetics (movement of text, images and other visual

8

Benjamin Laird

artefacts within the work) as occurs in both of Nelson’s versions

of Dreamaphage.

While Iser poses the reading experience as an event, Hayles

argues that the material properties of programmable and

networked works are themselves a process and an event (in this

sense, they could be considered an extranoematic event). Hayles

describes the poem in digital media as having “a distributed

existence spread among data files and commands, software that

executes the commands, and hardware on which the software

runs” (“The Time of Digital Poetry: From Object to Event” 181).

Hayles proposes that the poem in programmable and networked

media is no longer an object but a process and, as such, becomes

an event when expressed. “The poem is ‘eventilized,’ made more

an event and less a discrete, self-contained object with clear

boundaries of space and time” (“The Time of Digital Poetry:

From Object to Event” 182). This transformation from object to

event occurs prior to the reader’s interaction with the text.

Understanding a poem in programmable media as “eventilised”

implies a change in reading. No longer is the text an object to be

transformed into an event when read; more accurately, it is now

another kind of event. Cayley contends in “Screen Writing: A

Practice-based, EuroRelative Introduction to Digital Literature

and Poetics” that temporal and spatial aspects are part of and

realised in the form and structure of poetic engagements with

language. In print-mediated literature it is “in the special

attention we pay to the time and space of the poem” that dictates

how it is arranged: words, lines and spacing. These arrangements

are then “silent-implicitly or oral-actually realized in the

temporal rhythms”. Cayley argues that what programmable

media allows us to do is to materialise the spatial and temporal

9

(en)coded poetry: read, write, execute

qualities of poetry that programmable poetry performs “in real

passing time and space rather than in the imaginary space-time

of the silently reading mind” (183). This contrasts an event of

reading to the process (extranoematic) event of programmable

media.

When interaction becomes part of the process of reading, what

happens to reading? That is, what are the implications for

reading when the reader “uses” the poem or loses control of the

poem, as with kinetic works? In Cybertext, when addressing forms

of hypertext poetry directly, Aarseth asks “[i]s a hypertext poem

a poem?” He continues:

[i]t may be argued that clickable words and menus subvert the

lyrical genre by inviting the user to play an (imagined) personal

role in the production of a reading path. The ‘poeticness’ of a

poem would be challenged by the readers’ awareness of their own

subjective action. (86)

Beyond the subjective action is the reader’s/user’s behaviour

toward the interaction with the text. The reader in many works

in programmable media must move a mouse, click a button or,

in the case of installations, move their body. Massumi notes in

Semblance and Event that, in regards to interactive art, there is

a risk that the interactivity overpowers the artistic dimension:

“You often feel there’s a trick you need to find and master, and

once you’ve done that, you lose interest because you’ve got the

feel of it and know how it ‘works’” (46). Simanowski raises a

similar issue in relation to interactive art and the relationship

between the cognitive and the physical. Specifically he

questions “whether the interactor can attempt to understand—

decode—the work with which she has been interacting” (126).

In answering the question he suggests that “[t]he shift from the

10

Benjamin Laird

field of objects to the field of events and behaviour includes a

change from providing a specific message to providing a specific

space for interaction” (126). It is in interactive art that meaning

is created, but it is created by the interaction, not by a specific

message of objects.

These questions are not unique to poetry in programmable

media; rather, they are questions that have long being asked

in relation to print-mediated poetry. In his essay “Artifice

of Absorption”, Bernstein compares what he describes as

absorptive and antiabsorptive writing. An absorptive writing

is one that supposedly favours a reading of a text as content,

separate from its materiality. In reading such a work, the reader

is expected to shed the text for the experience of reading and

absorbing content-as-meaning. By contrast antiabsorptive

writing draws attention to the material or artificial nature of the

writing. It is not a binary relationship; rather, in all poems “[t]

he artificiality of a poem may be more or less foregrounded”

(10). Regardless of the degree to which the artificiality is

apparent it is all a necessary part of a “poetic” reading. He

reasons that if the artifice is conspicuous there is a tendency

to expect the text to have no meaning, while if the artifice is

hidden then the work is expected to be about the content and

therefore meaning. However, Bernstein reminds us, “[c]ontent

never equals meaning” (10). The form of the poem is in a

relationship with its content and requires a multilevel approach

to meaning. Bernstein writes that absorptive texts hide their

artifice while antiabsorptive texts flaunt it. It is for this reason

that programmable poetics can be read as antiabsorptive texts

when they foreground their artifice. Readerly absorption can be

disrupted by a direct address to the reader, which then forces the

reader to recognise the artifice of the reading experience (32).

11

(en)coded poetry: read, write, execute

Bernstein outlines antiabsorptive traditions in poetry including

visual and textual play, collage, fragmentation, errors, found

material, typographic inventions and references to things outside

the text (56). This includes the writing methods and writings

of the Language poets, Surrealists, Dadaists, John Cage’s

mesostics, and Jackson Mac Low’s diastic methods. It is however,

Bernstein claims, specific to the social, political and historical

period: what is antiabsorptive now may not be in the future as

it is incorporated into the expected reading experience. While

early modernists encountered resistance, for example, it would

be unthinkable to leave those same poets out of modern-day

anthologies.

Contemporary antiabsorptive qualities point to techniques

that have been extended to programmable media. Contrary

to Aarseth’s questioning of the “poeticness” of the reader’s

awareness, this reading of poetics places the reader’s awareness

within a tradition. An aesthetics that, as Simanowski says,

“promote a focus on the intensity of the present moment and on

the materiality of the signifiers rather than their meaning” (127).

As with the oscillation between the illusion-making and illusion-

breaking of the text as event, absorptive and antiabsorptive

methods interact while reading. Although both are predicated

on reader experience, the relationship between Iser’s illusion-

making and illusion-breaking are not the same as the

relationship between absorptive and antiabsorptive methods.

While the former is due to the reader’s own attempt to reconcile

the experience of the narrative, absorptive and antiabsorptive

properties relate to the materiality of text. Even though “reading

a text as an object” or “reading a poem in programmable media

as an event” are different, they still produce a reading event in

12

Benjamin Laird

the reader. While the expression of poetry in programmable

media distinguishes itself in its expression, the cause of that

expression must also be addressed; the cause I am alluding to

here is the code.

13

(en)coded poetry: read, write, execute

C H A P T E R 2

(De)coding Code

rocked up to the address entered the

site i popped the hood & just started

pervin’ on your code (it’s clean & oh

so elegantly compliant) tags all in a

row <!-- only you & I see this bit -->

David Prater, “Code Pervin’”

According to Hayles, “[t]he importance of active code to the

production of digital texts cannot be overemphasized; it is one

of the distinctive ways in which electronic literature differs from

print” ” (“The Time of Digital Poetry: From Object to Event”

181). Hayles distinguishes “active code” from “passive code”,

which act as instructions to the reader like italics or indentations.

This implies even in the domain of programmable media a usage

of the word “code” that contains multiple meanings. That is,

there must be at least two ways in which we can understand code

either computationally or as additional codes that work upon the

text, like italics, which we can read as emphasis or as a reference.

For Cayley, “code” is discussed in many more ways within

discussions surrounding digital poetry, poetry in programmable

media and codeworks. He provides five categories of code

14

Benjamin Laird

to clarify the usage of “code” in discussions of codework

(“Time Code Language: New Media Poetics and Programmed

Signification” 311). The first category is code as language; that

is, treating code as language on its own terms. As an example he

gives Glazier’s treatment and discussion of code for its own poetic

potentiality. In Digital Poetics, Glazier examines the materiality of

HTML both in terms of the code and also the context in which

the code runs (the paratext or, in this case, the paracode).

Cayley’s second category describes code where the language

works but the code is broken (it does not execute). This is seen

in works like those by Mez, whose work is discussed in more

detail in chapter four, where natural language is broken up by

codelike structures that disrupt the reading and the process of

reading, all of which occurs in the interface text. An example

is Mez’s “_trEm[d]o[lls]r_” where the codelike structure, which

resembles XML, frames the poem. In this work, the XML-like

elements that wrap the poetic lines that suggest structuring an

identity are non-functional. It provides a context for the poetic

and lends meaning to the poem through associations that are

both structural and technological. Cayley argues that the second

category of code demonstrates “the extension of the long-

standing enrichment of natural language that occurs whenever

history or sociology produces an encounter between linguistic

cultures and subcultures” (“Time Code Language: New Media

Poetics and Programmed Signification” 312). In that sense, this

second category of code can be comfortably situated within the

field of experimental poetics.

The third form is when code is presented as a natural language

to non-specialist readers. This is executable code written to be

read at the code level, even though the computational execution

15

(en)coded poetry: read, write, execute

may be meaningless. This code, as Cayley argues, operates as a

heavily constrained natural language form. Therefore, the poem

is written in a programming language only in the sense that is

executes and that it appears as if it were poetry. This is one of

the modes of “Perl poetry”. Perl is a programming language,

and Perl poetry includes poems written in Perl, Perl programs

that writes poems, and, sometimes, poems about Perl. As Cox,

McLean and Ward point out, often this is merely the result of

“porting”: the act of moving a computer program from one

platform to another, such as rewriting a program written for

Microsoft Windows to operate in Mac OS X. In this way the

poetry is ported from a natural language to a programming

language, “[i]t produces poetry in a conventional sense, possibly

expressing some clever word order and grammatical changes, but

does little to articulate the language of perl in itself” (par. 13).

Mateas and Montfort describe this kind of coding as part of a

broader double-coding or multiple-coding: the “words” are the same

but the meaning is different. It is a process that they also observe

in natural languages, when, for instance, a sentence may be

grammatically correct and sensible in two different languages,

say English and French, but in doing so ends up having two

different meanings (sect. 5 par. 1).

Cayley distinguishes these first three categories as usages of

“code” that produce codeworks that are “interface texts subject

to interpretation by readers”. The code here is “not running to

generate the text” at the location of its reading. Even if the code

here is executable, Cayley states that read in this context, the

code is not “significantly present in the text in a way that might

alter or inflect the manner of reading” (“Time Code Language:

New Media Poetics and Programmed Signification” 313).

16

Benjamin Laird

The fourth category of code for Cayley is where code is a “system

of correspondences”; that is, code as encoding. This concept

incorporates the materiality of code, recognising that digital

media has to be encoded in order to be stored and displayed.

That is, what appears on screen is a decoded, reorganised

representation of how the code is stored on the machine. The

signifier then has never been fixed, but in the digital space the

code acquires additional resonance from the materiality of

the medium. Encoding, however, is not a new concept unique

to digital media. Citing Barthes, Cayley writes that the text

evokes simultaneously corresponding codes. However, Hayles’s

digital encoding, as Cayley remarks, is mostly sublinguistic,

indicating, for example, the storing and displaying of the digital

representation of a letter (“Time Code Language: New Media

Poetics and Programmed Signification” 313).

Cayley’s fifth and last category is code as programming. This

category is not limited to computationally processed code but

extends to all programmatic or directed text. It includes, then,

instances in which the text operates programmatically. Cayley

argues that code as programming is part of all textuality and

programs are “a necessary aspect of the materiality of language”

(“Time Code Language: New Media Poetics and Programmed

Signification” 314). When the text itself operates to produce

writing Cayley refers to it as paratextual programming. Cayley

defines paratextual programming as when “the (integral) aspects

of inscription that frame or infect or undermine or position

the text to be read, that is, the interface text” (“Time Code

Language: New Media Poetics and Programmed Signification”

315). For example “(mis)read” can be understood as both

“misread” and “read”.

17

(en)coded poetry: read, write, execute

Referring again to the codeworks belonging to category

two, (such as the works of Mez, wherein the interface text is

“infected” by code), Cayley maintains that writing can also be

considered paratextual programmed when it uses “postmodern

punctuation”. He writes that “[a]ny text in which codes and the

codes of punctuation are integrated with the interface text …

can be unpacked and analyzed in these terms as inflected and

driven by paratextual programming” (“Time Code Language:

New Media Poetics and Programmed Signification” 315). Hence,

Mez’s title “_trEm[d]o[lls]r_” can be read as “tremor”, “dolls”,

“tremor dolls”, “Emo dolls” and so on. Cayley sees paratextual

programming as being in continuity with the programming

of programmable media. In addition, he views hypertext as

positioned between paratextual programming and the textuality

created from programs. In its simplest form, computational

hypertext is an arrangement of documents that are organised

and navigable. Whereas the paratextually programmed operates

on the word or the line, hypertext operates formally at the node.

Computationally operable, it thus bridges more complex uses of

programmable language production (“Time Code Language:

New Media Poetics and Programmed Signification” 317).

Common to discussions of code is a sense that it functions in

hierarchy. Raley writes “[w]hat the façade of the code surface

masks is the deep structure of code, the tower of programming

languages that descend from software to hardware” (sect. 1 par.

5). At the lower levels are machine and assembler (hardware

specific implementations) and further up there are higher-level

languages, like Python and C++. This structure has an effect

on the implementation and writing of code. Hayles notes in

My Mother was a Computer, that, at the lowest levels, code and

computational processing is intolerant (ch. 2). That is, the code

18

Benjamin Laird

closest to the hardware leaves less room for variation in the

way the function intended to be performed is written. As the

intolerance decreases with each level of programming language,

ambiguities enter the system. This hierarchy of languages might

imply a value structure in which the code closest to the hardware

is seen as more fundamental than higher-level languages.

Alexander Galloway, however, argues against this, instead

suggesting that value divisions between levels are “perhaps

misguided”, as the same program compiled or uncompiled is

logically equivalent (167). Galloway also views code as language:

“Code is a language, but a very special kind of language. Code

is the only language that is executable” (165). Further, in comparing

code with natural language, Galloway argues that while natural

languages have a legible state, “code has both a legible state and

an executable state” (166). Thus, code for Galloway is language

plus an executable metalayer.

What, though, does it mean for code to be executable? Galloway

states “code is the first language that actually does what it says”

(166). Does this not mean, however, that code can be considered

to be like laws or directives? As represented by the “tower of

languages” or hierarchy of languages, high-level programming

languages are removed from the specificities of the hardware,

and incorporating as they progress more elements of natural

language. In “The Code is Not the Text (Unless it is the Text)”,

Cayley argues that in order for a codework to express all the

qualities of code it must not only be contextual, it must also be

executable.

Marino, in disagreeing with Cayley’s position, refers to Mateas

and Montfort, reasoning that as code can be “written for

programs that will never be executed”, then execution must not

19

(en)coded poetry: read, write, execute

be a criteria (par. 32). Yet even when never executed, code is

written to be executed. Writing code is writing with the intent

that it will perform some behaviour, and, in the end, the measure

of a program’s success is if it functions as intended. Execution

as such is an aspirational relationship between the code and the

executing machine. A book, while intended to be read, does not

cease being a book when it is not read, but the fact that it can

be read is crucial to understanding it as a material object. The

execution of the code should be understood in similarly abstract

terms. Pseudocode, written to prototype functional code, for

example, sits above the tower of languages. As the name implies,

it is codelike in that it follows the logical constraints of code

but is not computationally executable (and therefore, as far as

computing is concerned, “pseudo”). The aim, however, is to

produce a logical structure in a language that can be tested

against. As such, it needs to conform to the logic of code through

an unambiguous expression of a natural language. There cannot

be linguistic slippage in pseudocode otherwise it fails to test the

constraints of the program that it prototypes. Pseudocode is a

programming language without machine hardware to execute it;

consequently, it always needs to be “ported”. While pseudocode

cannot be computationally executed, it is written with the

aim that an executable form is produced. It is aspirationally

executable and so, although removed from a machine

relationship, is a form of programmable code. A similar logic

works in relations to Cayley’s paratextual programming: it too

has an abstract execution. While computational programming

relies on a compiler, browser or other form of mediation in which

the rules for reading are built in, paratextual programming by

contrast requires the rules to exist within the reading practices

of the reader. Generative making of language in programmable

20

Benjamin Laird

media occurs at the same level in paratextual programming at

the stage when meaning-making is occurring.

As higher-level languages come to resemble constrained natural

language, the distinctions between code and pseudocode

becomes purely contextual. For instance, Python, a high-level

programming language, is described has having syntax that

“resembles executable pseudocode” (Lutz 5). Code as execution

and code intended for programmers invites an aesthetic that is

dependent on programmatic execution. Cox, McLean, and Ward

argue that the reading or hearing of poetry is the execution of

the poem, which is realised as it is experienced. They continue,

claiming that “like poetry” the aesthetics of code are in its

written form and its execution, and that the experience of written

code should be in parallel with its execution, or the realisation

of the code. This hypothesis, however, reduces all reading or

hearing to execution rather than considering execution as a

mode of reading.

Reading code, then, has multiple audiences, including an

informed expert audience. Hayles writes, “Like esoteric

theoretical writing, code is intelligible only to a specialized

community of experts who understand its complexities and can

read and write it with fluency” (My Mother was a Computer ch.

2). Computationally executable code for an expert audience

(programmers) still involves a subjective aesthetics. Numerous

factors (including those that vary between programming

languages) such as validity, structure, efficiency, verbosity, and

clarity are qualities that are enjoyed differently depending on the

individual programmer. Some value clarity, while others value

tightly written, efficient scripts. Testing a programming language

or exploiting a language’s idiosyncrasies (easily translatable to

21

(en)coded poetry: read, write, execute

poetic readings) can also be seen as an aesthetics of code. Mateas

and Montfort write of programming competitions and challenges

that aim at hiding the performance of a program in confusingly

written code:

This play, which can be called naming obfuscation, shows one

very wide range of choices that programmers have. Such play

refutes the idea that the programmer’s task is automatic, value-

neutral, and disconnected from the meanings of words in the

world. (sect. 11 par. 4)

Since the publication of Glazier’s Digital Poetics there have

been ten years of changes to the HTML standards and web

programming cultures. Currently, emphasis on separation

of content (textual), structure (HTML), display (CSS) and

behaviour (JavaScript) is seen as industry best practice. Glazier

writes that “[i]t is informative to consider an approach to

writing code that treats the source code as a fundamental part

of the meaning-making structure, not as secondary to another

‘purpose’” (103). This meaning-making is currently adopted as

the “semantics” of the webpage. That is, the structure of the

HTML itself is expected to explicitly denote the type of content

contained (in this regard, it is frowned upon to use table tags

for design layout). This is extended in HTML5 to include tags

such as “article” for group content and “nav” for navigation. In

the development of the latest standard of HTML5 a discussion

evolved about the fact that “HTML5 lacks explicit semantic

mark-up to express poetic forms” (W3C “Issue: Explicit Markup

to Semantically Express Poetic Forms”). While no poetry specific

mark-up was included, this illustration reveals a debate within

the industry about the semantics of poetry. In the semantic view

of the web (including both semantic and Semantic, as seen in

22

Benjamin Laird

standards such as Resource Description Framework), the code

and content are not only readable by machines to produce a

rendered version of the code, but also to present an unambiguous

representation of what that content is. As Galloway notes in

Protocol, “the word ‘Galloway’ is meaningless to a machine... But

wrapped inside a descriptive protocol it can be effectively parsed:

‘<surname>Galloway</surname>.’ Now the machine knows

that Galloway is a surname” (139). In poetics, however, do we

want to enforce that level of precision? Galloway is also a place

and a type of cattle, both adding complexity and layers to the

noun “Galloway”.

In HTML-based programmed or marked-up poetic works, as

in all codeworks, the code does not exist solely in the work.

Ambiguities are introduced through the range of different

implementations of the HTML standard(s). The interpretation

of HTML changes between web browsers (layout engines)

and versions. The standards outpace the adoption within

the browsers, even if at times the standards in flux are

experimentally included for a specific browser. The default

displays will still differ, though, as the underlying layout engines

produce slightly different results even when the same elements

are supported. Further to this, programmable works in Flash,

Java applets, and Silverlight require plug-ins to run.

There are many ways that code works in codeworks just as,

Cayley points out, there are many ways in which “code” is

used. While the second category Cayley describes only uses

code contextually, all other modes reveal a behaviour of code: it

operates at some level. In reading code as language, in infecting

code with language, in acknowledging the encoded depths, the

nature of programming or reading the visible execution of code,

23

(en)coded poetry: read, write, execute

users, readers and programmers accept that code performs at a

metalayer.

The presentation of code, both materially and contextually,

invites multiple methods of reading. The numerous

interpretations and position of code allow this. Marino

proposes a reading of code that incorporates all aspects for

interpretation: “Everything. The code, the documentation, the

comments, the structures—all will be open to interpretation”

(par. 32). Simanowski argues that code requires close reading

that “combines expertise in code and coding, as well as in the

interpretations of the representations that are generated by code

on the screen or at the site of installation” (219). Code-as-writing

extends this argument to a place of writing. Glazier writes:

“Code is a scene of poesis”; the nature of HTML, he contends,

forces an engagement with its materiality. Code, then, can be

written and read in as many ways in codework as the word

“code” is used. The multiplicity of different interpretations of

“code” reveal the multiplicity of ways code performs.

Given that code can be understood as occurring as paratextual

programming and code as a scene of poesis, modes of

experimental poetics could potentially be read as ante-coded. In

the next chapter I look at Patrick Jones’s “Step by Step”. Jones is

an artist and poet who uses experimental techniques that can be

considered as at the boundaries of programmable works.

24

Benjamin Laird

25

(en)coded poetry: read, write, execute

C H A P T E R 3

Patrick Jones: Hypertextual
Free-dragging Mesostics

How did we go from

meeting our needs to

excess and waste?

History of plastic

History of capitalism

Stephen Collis, “The History of Plastic”

The reading event is tied to the physicality of the presentation of

poetry. This materiality of language allows for poetry to produce

complex readings through formal and experimental techniques.

A poetry that forces a reader to make choices foregrounds the

unconscious decision-making that we do as readers.

Patrick Jones’s “A Free-dragging Manifesto”, published in

[How To Do Words With Things], begins with a quote from Joan

Retallack’s “What is Experimental Poetry & Why Do We Need

It?”: “Page becomes stage transfigured into time-bracketed

instances of a continuous present; written language becomes a

surprising performance of its charged materiality”. The concept

26

Benjamin Laird

of the “stage transfigured” underlies much of Jones’s poetic work

(“A Free-dragging Manifesto” 47).

Jones, an artist and poet living in rural Victoria, creates poetry

that consciously disrupts the reading experience. His “free-

dragging” poetry initially consisted of non-dance performance

which involved Jones and a fellow artist dressing in women’s

skirts, shirts, stockings and shoes—“drag”— and arranging

themselves in various positions around urban locations, as seen

in Fig. 1 from “A Free-dragging Manifesto” (“An Interview

with Patrick Jones” 149). Jones considered these works a form

of poetry written with the body, with the text a non-lyrical,

disruptive and political statement. The act of free-dragging

itself is the result of a predetermined method to perform the act.

Returning to print after these experiments led Jones to move

Fig. 1. Images from A Free-dragging Manifesto

27

(en)coded poetry: read, write, execute

from the physical performance to a “slow-text” form inspired by

John Cage’s mesostics3.

Jones contends that he uses “a decentralised Cagean mesostic

procedure, to create an example of what I want to call slow

text – a text where the once streamlined words become a little

disobedient on the page” (“A Free-dragging Manifesto” 24). The

slowing of reading through textual disruption is an example

of what Bernstein calls antiabsorptive writing, as noted above,

Jones’s methods reduce the sensation of being “transported” and

what Jones deems easy-to-consume text. This theory reveals

Cage’s influence, who saw making language un-understandable

as political and artistic action: “[S]o what we’re doing when we

make language un-understandable is we’re demilitarizing it,

so that we can do our living... It’s a transition from language

to music certainly. It’s bewildering at first, but it’s extremely

pleasurable as time goes on”.

Unlike Cage’s generative mesostics, created by applying a process

to a text, Jones’s poetry is written specifically for the form. Jones,

in drawing a parallel to his physically performative work, states

his work is “creating a physicality for the reader’s eye” (“An

interview with Patrick Jones” 149). The rendering of the text on

the page is important to Jones who sees his poetry practice as

“being very much focussed on the materiality of language” ([How

To Do Words With Things] 14). In “Step by Step” Jones draws focus

to his techniques as political, but, at the same time, his practice

does not eschew the politics of his poetic content.

3 Mesostics is a form of poetry in which a letter within a line aligns
vertically to produce an additional line.

28

Benjamin Laird

His poem “Step by Step” begins:

“Step by Step” is formally striking, consisting of eighteen four-

line stanzas, with each stanza acting as a separate mesostic

spelling out the word “STEP”. The pattern of the words, with

superscripted letters g and b and subscripted letters r and d,

reduce the likelihood of a skimming intake of the words and

lines. The reading is, as Jones intends, slowed. A slow text

opposes easy absorption precisely because you have to “notice”

the text as you “consume” it. As an antiabsorptive technique,

it slows the reading event. The conversion of mark to meaning

requires additional decoding as the words are defamiliarised.

Each “step” in the poem shadows its stanza and hints at the

ordered progression of a ticking clock, a progression ominous

and irreversible. Reading each line, however, requires actively

disengaging from the step and resisting its pull down the page.

The step as a separate reading event attempts to speed up the

poem in what initially seems to be inevitable catastrophe, as

implied in the second stanza: “we habiTually war and rationalise

its genocide / and wE leave our food production to faceless

corporations”. Jones’s “A Free-dragging Manifesto” is an

argument for a poetics that embodies a sustainable way of life.

Recounting a discussion with graphic designer Ian Robertson,

Patrick Jones writes, “We talked about perceiving the poem;

that once you ascertained for yourself what a poem is or what

when population

we rely on resources

and indoing so forf

that our uns

S swell and get sucked into cities

Trucked from somewhere else

Eit the ecological intelligence

Pecialised ancestors kept so close

29

(en)coded poetry: read, write, execute

is poetic, the potential form of the poem becomes infinite, or

at least specific to its subject” (Words and Things ii). It is in this

potential form that Jones’s mesostics are realised.

Jones’s work creates a sense of the ordered organic that reflects

his politics. It is a sustainable natural response and what he calls

a permapoesis, modelled on the ethics of permaculture for a poetic

sensibility. Consumption is slowed in his work as a statement

against consumer society. Formally, the mesostics function

hypertextually, creating a secondary reading in a downwards

direction on the page.

In “Step by Step” the stanzas move into endings of rhyme and

half-rhyme. The third stanza, for example, rhymes civilisation

with hyper-separation, which refers to both an ecological and

social result of “industrial civilisation”. The hyper-separation

also marks a point where Jones uses a footnote (the only one in

the poem), which acts hypertextually, visually drawing out the

reader and creating the third antiabsorptive method used in

the poem. “Step by Step” is both a warning of the approaching

collapse of industrial society (Jones takes Jensen’s quote

“industrial civilization is not and can never be sustainable”

as one of the starting points for his introductory essay in [How

To Do Words With Things]) and a movement toward building

environmentally conscious communities (24).

The poem, if extracted from the textual interference, is lyrically

traditional. The slowing down of the reading emphasises the

experience of reading the text. Jones views reading and listening

to poetry quite differently, and the lyrical structure of his poems

reflect this; he writes, “The reader of these slow-text mesostics

can hear quite conventional poems often with rhymes so that on

30

Benjamin Laird

the page there is a sort of physical difficulty but when heard …

they appear like folk songs” (“An Interview with Patrick Jones”

150). The aural quality, once decoded, reduces the complexity of

the reading event; the event here is the relationship between the

reader and the text.4

Jones provokes the reader’s oscillation between involvement and

observation through, as Iser describes, the attempted resolution

of the illusion-forming and illusion-breaking. The antiabsorptive

techniques push toward observation but it is in the oscillation

that the text becomes an event. The oscillation is what is

significant, but is also, of course, contextual to the reader. The

reader can experience an antiabsorptive effect by being hostile or

bored with a device. Bernstein writes that:

 devices, whether absorptively

or antiabsorptively employed, are in themselves conventionalizing

& readers can be expected

to enjoy a device that ruptures the ‘commodif ication’

or reading insofar as this fulf ills

their desire for such a work &, likewise, to

be bored to irritation by a device meant to soothe

or entertain (65)

Jones, through the use of experimental techniques and “folk

lyricism”, is successful in producing and representing Iser’s

4 It is beyond the scope of this study, which is concerned with the reader-
text engagement, but it raises interesting questions concerning the aural/
oral qualities of poetry. The decoding, for Jones, is a textual experience,
which actually suggests two different poems. How could the encoded
complexity of the slow text manifest aurally? An additional question
arises for the materiality: if Jones’s slow-text is aurally realised, is this also
required in a reading of the extranomatic event in programmable works?

31

(en)coded poetry: read, write, execute

oscillating effect of the living event. While Jones is able to do

this expertly, it is by no means the only way to achieve synthesis

between antiabsorptive techniques and absorptive results in

the reading event. He achieves his experimental techniques

by using layout to affect the reading. His methods suggest a

programmable or hypertextual mode but do not employ code in

execution or content.

Following this trajectory of experimental modes of poetry that

employ textual techniques to affect reading, in the next chapter I

will look at Mez’s _cross.ova.ing][4rm.blog.2.log][_.

32

Benjamin Laird

33

(en)coded poetry: read, write, execute

C H A P T E R 4

Mez: Paratextually
Programmed Mezangelle

< autonomy / >

 or

< if yes, goto phase X / >

< if no, go … / >

 or

Maged Zaher, “Rented luxuries (made out of
collapsing thoughts)”

Mez (Mary-Anne Breeze), a NSW-based artist and poet,

has amassed numerous works using her own “digital creole”

mezangelle. Mezangelle mixes punctuation, abbreviated

language associated with online and SMS communication, and

technology-informed or codelike structures.

Her works, as Cayley argues, can be read as codework in the

context of code-informed subcultures or in some cases read as

“code” because they are paratextually programmed text. In

discussing electronic works, Stephanie Strickland extends Hayles

“flickering signifier” to include an additional form of oscillation:

that which exists between “processing alphabetic text and the

34

Benjamin Laird

processing of image in works that use both” (185). For text-only

works, this is a flickering between the text-to-be-read and the

text-to-be-viewed-as-image. The reading of Mez’s work, for

Strickland, requires moving between positions to “unpack” the

text, triggering a change from reading to scanning, which is

“a perceptual act more often associated with image”. As such,

Strickland regards this process as allowing “for multiple, plural,

and contradictory readings” of Mez’s texts (186). Funkhouser, on

the other hand, suggests that the verbal “plasticity inherent in

mezangelle enables many interpretations” (161).

cross.ova.ing][4rm.blog.2.log][, anthologised in Electronic Literature

Collection Volume 2, is a 258-line collection of mezangelle work

presented as a text file. As it is a text file, its interface text is

identical to its viewed source; this means that although it is

represented online (and delivered across a network), it can be

read on a single interface layer. It is divided into ten sections,

each numbered and timestamped. The ten sections work as

stand-alone pieces, having been previously published in various

locations on the web or as emails, but they also form a single

work. The gathering of individual pieces into a single work is

implied by the title, _cross.ova.ing][4rm.blog.2.log][_; the title itself

is representative of mezengelle. The title mixes phonetics and

punctuation to produce multiple readings; for example, “cross.

ova.ing” can be read as “cross over” or “crossing over”, and

“4rm.blog.2.log” as “from blog to log”. The additional subtitle

of the poem indicates an anthologised form: “Codewurk [actual

work]”. Due to its text-file form, the text is additionally restricted

to a monospaced format and simple ASCII text presentation.

The first section (or poem) is “SocialConnectionAccessProtocol[-

SCAP -]”, which imitates an exchange, login and checkout of

35

(en)coded poetry: read, write, execute

CVS (Concurrent Versioning System) a version control system,

though the piece also suggests a “ControlVersioningSystem”.

Version control systems are software that allow the storing and

tracking of projects as they progress. They are a way for multiple

programmers to work on the same project at the same time

and to release the project incrementally. The “SCAP” in Mez’s

title also technologises social communication via the multiple

meanings of “protocol”. “SCAP” is, like many of Mez’s works,

understood best through Cayley’s second category of code.

That is to say, code and coding subcultures as context for the

codework.

The lines in “SCAP” are not operational, or even non-

operational, code, but are instead lines that mimic a command

line connection. Reading the CVS “commands” give the poetic

lines additional context. For example, “codependentserver” is

in the position of the CVS access method, which is the method

for connecting to the repository. The “codependentserver”

here could be read as “codependent server”, or, with a double-

reading of the “co”, “code dependent server”. While the

reader knowing that the position of “codependentserver” is

where the access method is located provides an additional

meaning to the line, particularly in the context of the

“SocialConnectionAccessProtocol” as co-dependency for social

access, the co-dependency of the server also implies a similar

relationship. In the same line, “internaltripwiring” is positioned

as the user for logging in. This “internal trip wiring” can be

read both as travel, as in “internal trip”, and as a note to take

caution when reading the pieces. There is enough code in this

work to expose its technology/code informed creation, and yet

the code is sufficiently broken to trigger a reaction from readers

who realise the fact. Similarly, those who are not familiar with

36

Benjamin Laird

the technology-informed fragments are likely to trip on them.

“SCAP” continues with the SCAP program being checked out:

cvs server: Updating abortive/directory/SCAP

Ur abortive/directory/SCAP/NO.pls

Ur abortive/directory/SCAP/YES.dmg

Ur abortive/directory/SCAP/ChangeRealityLog

The conclusion to “SCAP” emulates release information that is

presented as if different versions are available with commentary

in mezengelle. Within this list, suggestive of many of the forms

in _cross.ova.ing][4rm.blog.2.log][_, is the line “#unre[a|]eling

unstable_conversation_w[g]r[e|]app[l]ing”.

The second “bet[t]a[living.thru.brutal_ness]”, fourth “In this

album”, eighth “#.Pls. .Select. .ur. .Char[r(i)ed.H]Ac(k)tor.#”

and ninth “The 10 Best Synapse.Skys of the Web” pieces all use

mezengelle to various effects as a core mode of presentation.

The works are technologically contextual with “bet[t]a[living.

thru.brutal_ness]” a beta access invitation to try a new service

that ends with the damning, “www.Trickling.D(CL)o(P)wn(ed).

Ur.Marketing.Facex .com”, revealing that the invitation was in

fact a marketing manoeuvre. “In this album”, on the other hand,

establishes a set of names and albums describing ”(photos)”,

while “#.Pls. .Select. .ur. .Char[r(i)ed.H]Ac(k)tor.#” presents

two character profiles. The final of these pieces, “The 10 Best

Synapse.Skys of the Web”, is a list of ten mezengelle. The

mezengelle act as lines of language generation. Whereas Jones’s

slow text slowed the readers reading, Mez’s mezengelle generates

language during the act of reading. The more familiar the reader

is with the context, the more language generated. Words and

lines are encoded within other words and lines. As a form of

generating language they exhibit, as Cayley maintains, a form of

37

(en)coded poetry: read, write, execute

paratextual programming. In a certain sense, the lines in these

works “execute” as they are being read.

In “#dn[p]a[per.cut here.]bird#” mezengelle merge with

the A, C, G and T DNA-bases. Here the code is genetic and

contextual to the work: it is non-functioning DNA code. In a

similar way, this contextual code use is apparent in “_trEm[d]

o[lls]r_”, wherein the code is XML-like. The structure the

pseudo-XML compositionally implies a meaning that oscillates

between the fracturing caused by a plastic presentation, for

instance “var=‘user’ val=‘YourDollUserName’”, and a tremor.

The first fracture posts to the character inscription, itself a

cutting into the surface, while the second is a post to the skin

with “YourPolyannaUserName”, hinting at a surface that is

constantly upbeat. The “polyanna” also shares “poly” seemingly

referring to “polymer”, plastic reference, and “polygon”, an SVG

reference. If treated as XML, however, it is not well formed.

The top-most “fracture” opens with “fracture” (the start-tag),

but closes with “fractures” (the end-tag), hence the XML itself is

broken and consequently fractured. The code, therefore, does not

“execute” in any meaningful way.

The third codelike piece contains allusions to the Perl

programming language. “531 - (ch) . amber (ed) k (h) e (a) r (t)

nels” joins variable like non-variables “$stiff”, “$limb”, “$swelt”

with strings “ening”, “less” with what seems to function as a

string-joining-dot operator. However, after the variable-like

elements are joined, the lines avoid the code structure and fall

into mezengelle. The code, then, functions like the rest of the

mezengelle: as a paratextually programmed writing. Beyond the

associated code are the additional meanings being generated by

the placement of the associated code.

38

Benjamin Laird

Although disparate, each of Mez’s pieces within _cross.ova.ing]

[4rm.blog.2.log][_ form narratives that are more meaningful

than simple parataxis. The associated codelike contexts aid

in building the narrative and while the lines themselves are

meaningfully dynamic, producing multiple readings, the pieces

do not read randomly or without construction.

A reading of Mez’s work as that uses code to structure a

narrative presentation of poetry, as well as recognising the way

the lines can be paratextually programmed, reveal methods of

reading code that operate programmably. As a poetic reading

is an approach to reading Mez’s codework, the reading of Mez’s

works suggests a method of reading code. As such, this also

provides a method of writing code in operational programmable

poetry; that is, using the context of the code as meaningful layer

to structure a poem at the code-layer. Lastly, Mez’s paratextually

programmed works produce language when the encoded lines

“execute” in reading. This is not a computational execution,

however. What, then, can occur when code is executed

computationally and how can that help to understand code in

programmable media? In the next chapter I will look at both

versions of Jason Nelson’s Flash work Dreamaphage.

39

(en)coded poetry: read, write, execute

C H A P T E R 5

Jason Nelson:
3-Dimensional Page in

Dreamaphage

From this hospital bed

I can hear an engine

breathing—somewhere

 in the night

William Carlos Williams, “The Injury”

Jason Nelson is a Queensland-based new media artist and poet

who works in Flash. Due to the fact that the code within Flash-

based works are not accessible to the reader of the work without

additional or specific software, this reading will focus primarily

on the codes’ execution or realisation. Dreamaphage versions 1

and 2, first published on Nelson’s website secret technology and

later collected in Electronic Literature Collection Volume 1, are

Flash poems presented as medical reports of a Dreamaphage, a

term that hints at an infection of dreams or, perhaps, a dream of

infections.

40

Benjamin Laird

The second version was created a year after first using the same

poetry, narrative and images to produce a layered work of mixed

textual forms and media. Nelson states in relation to this work,

“I love the 3-dimensionality of the different dreams and the

layering of stories, poetry, science and multimedia playthings”.

Interestingly, the first version of the work creates more depth,

while the second rendering revisits the textual material and

imagery from the earlier work, but more drastically alters the

interaction mode. Nelson writes, as an introduction to the second

version:

Unfortunately the f irst version of Dreamaphage suffered from

usability problems. The main interface was unwieldy (but

pretty) and the books hard to f ind (plus the occasional computer

crash). I redesigned the main interface, playing off the 3D feel

of version one, but placing it within two dimensions. (“This Is

Almost Everything I’ve Created”)

Fig. 2. Dreamaphage version 2 title page

41

(en)coded poetry: read, write, execute

Both versions of the work begins with a similar title screen.

Motion-filled squares foreshadow the instability in the work,

while a quote from Dr Bomar Felt insinuates the piece contains

books of dreams that contain a pattern to a cure. Dr Felt’s quote

ends with the ominous question, “[h]ow long before I become

another lost?”. It hints at a disorienting horror to come, complete

with a haunted hospital.

After clicking to begin the first version, the reader is presented

with an introductory screen. It is a single screen entitled

“diseaseinterface”; with bright yellow text that breaks apart,

before transforming into blurred virus-like objects, it evokes

the aesthetics of early ’90s computer games, such as Doom. The

Dreamaphage itself, we learn during the introduction, is a disease

with no cure that begins by occurring once a week until, finally,

it repeats nightly, overwhelming the neuropathway and causing

death.

Fig. 3. Dreamaphage version 1 introduction

42

Benjamin Laird

Upon commencing the reading, the depth in the piece is

immediately apparent. There is a sensation of falling, or moving

down a corridor, as the user/reader moves, via a dragging action

with the mouse, through the many layers. Each layer of the text

contains a patient case file. That case file can then produce a

“book”; within these books are links that can open additional

spaces. Hence, the Dreamaphage reading is like peeling away

layer upon layer, while simultaneously adding to the collage of

sound, image and text contained within the work. While moving

between layers, the reader is presented with patient records.

These files are anonymous and only associated with a patient

number, but they contain an analysis, virus cure date, treatment

and doctor. Selecting the patient record opens a “book”. The

“book” is an interaction method within the work. To “use” the

book, a pulling motion is required, which drags the pages from

right-to-left (or left-to-right to move backwards in the book).

It is a style similar to the navigating forward and backward

through the layers, through holding the mouse button and

moving the mouse. Even though the interaction styles are similar

extranoematic activities (holding down the mouse button and

moving the mouse), the sensation is altered by the responses from

the work. That is, the book navigation evokes a feeling of flipping

through a book, while the movement navigation induces a sense

that the reader is moving.

The second Dreamaphage changes the interaction style due to

difficulties readers had finding and reading certain elements

within the first. In the second version, the patient records sit

over moving backgrounds that indicate a networked infection.

The introductory is replaced with the book-style interaction

mode previously seen in the body of the piece. The change to

the interface and interaction mode in the two versions provide

43

(en)coded poetry: read, write, execute

competing readings of what is nominally the same work. If

the extranoematic event within the text is too opaque, then

the reading event suffers. The methods of reading compete for

attention to disrupt the reading experience. For example, version

1 requires the reader to fight the motion within the work to even

read the patient record.

Fig. 4. Dreamaphage version 1

Fig. 5. Dreamaphage version 2 introductory “book”

44

Benjamin Laird

The Dreamaphage virus’s dual computational-human nature

is foregrounded in the reading when a countdown is triggered

within the work. The countdown begins stating ‘“Dreamaphage

will be downloaded into the machine’”, with the download

success being noted as ‘“00000001111000111virusloaded111100

01010100110’”.5 It suggests acts as a computational disruption

of the text. Though Despite the fact that this is the most explicit

element in Dreamaphage that presents self-reflexivity regarding

code, it actually describes an event that does not occur. It, like

contextual codework, is code that merely appears in the text as

the functional code here displays it

The multiple Dreamaphage versions also add to the sense that

the work is layered. In producing it Nelson writes, “I wish more

artists revisited older works, adjusting for changes in tech and

poetic sensibility” (“This Is Almost Everything I’ve Created”).

5 Dreamaphage is of course already loaded as it needed to be loaded in
order to execute.

Fig. 6. Dreamaphage version 2

45

(en)coded poetry: read, write, execute

This aesthetic preference suggests he believes poesis is not fixed,

but is instead realised in the dynamic nature of works.

In both versions, links within the books open fragments that

increase the chaotic interaction with text, and an initially

readable section will become overwhelmed with text, making

it difficult to read. The HTML that frames the Flash piece,

however, contains exactly the same text, so even as the

“executable layer” becomes difficult to read, the more difficult

to access source layer includes the text of the piece written as a

whole. This reading of the paracode also extends to a reading

of the directory composition. Fragments of the work’s creation

leak into the file structure. The directory that holds the second

version of the work contains Flash source files (.fla) and Flash

movie reports that list frames, images, file, bytes, scenes,

ActionScripts and fonts. The listing of each of these HTML

pages and Flash files adds to the collaged nature of the work.

Hayles, writing about Nelson, claims that as a practitioner he

is among those “who think of themselves as primarily graphic

artists and programmers writ[ing] texts to incorporate their

works” (Electronic Literature: New Horizons for the Literary 22). The

texts, however, seem incorporated in the collage much like the

other elements involved. Yet, as with collage, the looseness covers

a careful artifice. In a case study on Nelson’s work I made this.

you play this. we are enemies., Funkhouser writes “Nelson uses and

digitally expands appropriative techniques established by writers

who have used cultural refuse as compositional elements in order

to question the status quo and enliven human experience” (172).

Those appropriative techniques suggest previous constructions

within works like collage. This method of collaging translates to

46

Benjamin Laird

the way that Nelson writes his code. In an interview with Carmel

Hagen, Nelson states that:

When you are entirely self-taught, and rarely collaborate,

you spend heaps of time scouring the net or code answers and

possibilities. So what you would see if you cracked open my

works is a mess of loosely tethered actionscript, sometimes in

various different languages and versions of f lash. (“Spear Talks:

Jason Nelson”)

The program here then also reflects the collaged nature of

Nelson’s style. A reading of the mess of scripts may well give

a parallel experience to the reading of the final Dreamaphage

version.

Dreamaphage, it follows then, occurs as a sensory collage

including aural, visual and interactive styles. This is an

aesthetic that appears both in the production of the work and

also in the expression of the executed work. Hayles writes that

Dreamaphage, through its use of animation, sound and design,

“testifies through its very existence to the extent to which code

has become indispensible for linguistic expression” (“Traumas of

Code” 39). The code acts both symbolically and actually in the

realisation of this expression, whether contextually in the phrase

suggesting a downloaded virus or even directly through the

creation of the extranomatic event in the different versions. The

work is impossible without code and capable of being realised

without being read.

How then to write the ways in which code exists in poetic works?

In the next chapter I discuss the works I created to attempt to

help answer this question.

47

(en)coded poetry: read, write, execute

C H A P T E R 6

Programmable Poetry and
Writing Code That (Works)

Text is indeed “the web’s primary and foundational media” and

the artists of text are poets.

John Cayley, “Time Code Language: New Media
Poetics and Programmed Signification”

For this exploration of code as containing multiple methods of

reading and writing, I wrote ten pieces. The first five are print-

based works that attempt to test the boundaries of code in a

flat-material medium (without going beyond the page). The last

five are HTML-based works that use the two surfaces inherent

in that medium. All ten works are constrained works even within

their respective medium, but each attempts to engage with code

in the different ways that have been discussed throughout this

exegesis.

48

Benjamin Laird

Print-based works
Code can be used to produce, develop and extend the poetic.

The use of code provides an opportunity to create poetic works

in print either as a cultural reference, using its social and

functional attributes symbolically, or to programmably generate

poetry with a fixed end result. These two methods of creating

poetry from “code” distance the work from an actively executing

code. The code has been run either purely contextually (with an

awareness of the social value of code), or run as a computational

method of generating a work. A third form of code(d) poetry,

as described by Cayley, uses punctuation experimentally on the

page as a form of programming.

I have used these three methods as a way to explore the poetic

in code. The print-based works were written with poetry

generation software, privately written scripts or in the context

of programmable relations, as were also an attempt to explore

the paratexually programmable nature inherent to experimental

poetics. The poetry is constrained to only use the flat surface

suggested by print, rather than the dynamic possibilities of the

material properties of paper.

Sognare la tromba / Suonare la tromba
“Sognare la tromba / Suonare la tromba” is only possible

because of contemporary society’s relationship to the web. The

loss in translation intimated at in the poem, the translation of

Eco’s Foucault’s Pendulum from Italian to English, can be symbolic

associated with loss of meaning when code is executed, the

translation from text to function.

49

(en)coded poetry: read, write, execute

The difference between code as writing and code as

programming is like the difference between the “sognare la

tromba” and “suonare la tromba”. More specifically, they are

alike in appearance but not in enactment. Playing and dreaming

are two different acts, even if they sound similar in Italian.

The cultural context for the work is a networked coded

environment. Both the Amazon review and Google Translate

exist because of very large amounts of code and networked

systems. These are popular software systems wherein the

execution of the underlying code is visible. This does not place

it necessarily within the realms of codework, however, as

the poem is not referring to coding subculture or technically

specific esoterica. There is no subculture here: both Amazon

and Google are monoliths in contemporary internet-aware

cultures. Moreover, it is the expression of code in the poem

that is naturalised and detached from its form. The experience

of software, web browsers and websites are now a normal and

commonplace mode of interacting with computers.

elemental positioning
The work “elemental positioning” is an attempt to express the

conceptual contextual nature of code within a print-based piece.

As a consequence, it operates like Cayley’s second category of

codeworks, reflecting a work that uses code as a context.

XML’s base node, the root node, offers an intersection of terms

between the meaning of root as computational term and root as

a natural term. Building from the root node extends the XML

outward like a tree. The root moves onto the trunk, branches

(terms also used in software, such as “version control systems”)

and then finally to a bird. This is structured nature. Setting

50

Benjamin Laird

the XML namespace as “nature://tree” puts “nature” in the

protocol position and “tree” in the identity position; this is then

read as, “tree as understood through nature”.

The work illustrates the boundaries in which certain codeworks

can be placed. Like antiabsorptive techniques, the dominant

cultural relationship to the form and content challenge their

definitions. If the content or form is code-informed poetry (as

Cayley says of the second category of codeworks), then when the

subcultural becomes cultural and everyone starts writing XML,

the work’s designation as codework will be challenged. Engineer

and poet Maged Zaher also uses XML-like structures in his

poetry, but within the context of experimental poetics as opposed

to codeworks. Thus, code as a base of execution is a material

property of the work as opposed to a contextual property.

rendering
A form of paratextually programmed writing, “rendering” works

on the word and the line to generate additional and ambiguous

language. The coding here directly appears on the line by using

non-software code and punctuation, breaking apart the words.

The multiple readings then arise from rereading or shifting

perspective along the words and lines. Rendering is an act of

interpretation, a translation, and the generation of computer

graphics. I attempted to have the poem enact its contents as it

writes it, with the reading itself a process of generating meaning

from the poem. A reading event in “rendering” metaphorically

follows the generation of meaning by (re)reading the text and the

generated text.

The need to reread causes a jitter between the text that presents

its multiple meanings linearly, such as, “daedalus amazed by the

51

(en)coded poetry: read, write, execute

bullish market . / his son by the bear” refers to the Labyrinth

(a metaphor for the text itself), the Minotaur and Icarus’s fall

through a metaphor of the market. Then the line, “trading

futures froze- ’n fry’s combinatorial post simp- le . ic . / (hth|ar)

us broadcast on ev| angel . i . ca . l . end . ars gratia art /.is”,

nominally begins with a reference to the market but also

produces “icarus / ichthus”, “angel / evangelical / calendar /

ars gratia artis / art is”. The “icarus / ichthus” is then encoded

once again, this time to stand in for “sons” to produce a cultural

reference to Futurama “future’s frozen Fry’s post Simpsons”.

Producing language at the line through word-encoding parallels

a constrained coding in more forgiving high-level languages.

The writing is constrained by the natural language (in this case

English) and the function that acts on the text. The execution

is, however, culturally contextual, rather than technically

contextual, as it for the case with code. Natural languages

fail to execute when the language changes or loses context.

Programming languages fail when they cease to be compatible

with newer versions or are no longer supported by hardware.

I sing the sound electric
“I sing the sound electric” was generated using Gnoetry v0.2

from Linux HOWTOs, the screenplay for Blade Runner, and the

lyrics to Gary Numan’s “Metal”. In writing this work, I took

what could be called a curatorial position to produce the writing.

The method of creating the work itself was left to the program.

Instead I chose, found and formatted the input texts and also

the method of output. Gnoetry produces new texts based on the

properties of the source texts, such as the statistical distribution

of words.

52

Benjamin Laird

The source texts were chosen because of their exploration of

ideas of construction, as depicted in Blade Runner’s replicants or

Numan’s line, “We’re in the building where they make us grow”.

The Linux HOWTOs, part of the Gnoetry base texts, provided

the third text. Given the use of the properties of the source text

as inputs to produce the final text, Gnoetry recasts the texts as

coded inputs. The structure of these source texts also acts like a

code, which helps to shape the final text.

The code, then, is distributed between Gnoetry and the source

texts. The fragments of the code that persist in the print piece

are those that existed as statistical properties in the original

texts.

hangman
To produce “hangman” I wrote a Python script that reads in

a text and breaks it into strings (of mostly words). The script

is designed to filter or remove characters, exclude words with

certain characters or require the words in the output to contain

specific characters. The last word of the work selects the number

of lines and the last word of the line selects the number of words

in the line. This results in a method that only links to the source

text through the use of words, and not with the structure of the

original text (unlike in the last poem).

Using Mary Shelley’s Frankenstein as a source text, I generated

hangman by selecting “ang”. This makes the “ang” common

to all the words in the work. As with its namesake, the game

Hangman, it centres on selecting the correct letters to find

the final game. Rather than using the format produced by

the Python script, I reworked the text into a single line and

justified its formatting. The change in structure emphasised the

53

(en)coded poetry: read, write, execute

“ang” and made the piece seem more complete. The language,

however, was not edited and led to the fortuitous phrasing

“stranger strangled languages”, which left me to ponder whether

I am the stranger strangling the language or whether it is the

machine.

This piece also distinguishes the code in this work as external

from the work, highlighting it as a method, as opposed to a

part of the work. The code here has been used to automatise a

process I could have manually performed; thus the code reifies

the method of producing the text but is clearly not a part of the

final text. Hence, the aesthetics of the code in this work are as

separate from that of the work as the source text it was generated

from.

HTML-based works
Using HyperText Markup Language (HTML), Cascading Style

Sheets (CSS) and JavaScript gives the advantage of presenting

both the code and the representation of the processed code in the

finished work. Artificially, I have sacrificed the networked and

interlinked nature of the medium. While the code required to

process the works is present in the browser, the works themselves

are self-contained. I have eschewed the use of image and audio

files, as well as external libraries such as jQuery or prototype,

in order to keep the code contained to a single file. The result

is a constrained process that requires all effects to be generated

by the visible code in the work. In this way, I aimed to mimic

print-based single poetic works, while exploiting the differences

that code brings to those texts. Libraries of code do have a

54

Benjamin Laird

symbolic value in representing the way we bring our knowledge,

as readers, to a text. This, however, extends the readable text to

the libraries, which if the code is to be read in its entirety, should

also be read.

The code in the pieces attempts to characterise the ways in

which code challenges the methods of writing and reading.

The HTML works combine and use various forms of languages

in order to produce the effect. It is important to note that the

natural language used within all the works is English. Natural

languages in poetics are manipulated to produce meaning in

wordplay, rhyme, visual rhyme and so on. In HTML, using

English as the natural language is significant because HTML,

like most popular programming languages, uses a programmable

vocabulary based on English. The HTML is used structurally

to scaffold the work, and, as Glazier points out, is still part of

the meaning-making and cannot be separated from the natural

language, English, present in the work. More specifically, the

HTML used is HTML 4.01 and so the content type (MIME

type) is “text/html”. The style level, the level describing the

presentation of the HTML, is defined by CSS, a separate

style sheet language. JavaScript, the fourth language used, is

a scripting language for programming the behaviour of the

works. All the languages used “execute” on the client-side: in

the browser. The HTML works have a defined encoding. Text

computationally has multiple methods of encoding that define

how the characters are encoded; in other words, they are read by

the computer in ways that can be stored and displayed. For all

the works listed below, UTF-8 is used.

In addition, the following pieces attempt to explore the way

code affects reading in terms of reading as an event, and the

55

(en)coded poetry: read, write, execute

representation of “active” code in the presentation of the

extranoematic event.

the representation of self
“the representation of self” is a fixed non-interactive poem. The

first layer of interface text only casually hints at deeper layers of

the work. The single line stands broken on the surface, a shape

suggesting a roof, or a logo for a real estate agent, or the tip of

an iceberg (the white against blue). Reading only the surface text

opens multiple readings of the piece through the ambiguity of

both the line and the line’s shape. The break on the line occurs

mid-word giving an angular balance but additionally breaking

the language in the text. The code at the surface layer could be

presented as merely a typeset concrete poem. The poem, situated

as it is in HTML, suggests a representation of the self is a re-

presentation.

At the HTML code layer, the line “the representation of self” is

still broken but now it appears as straight line split by code.

<div id=”representation”>the represen</

span>tation of self</div>

The line is translated by the browser, which uses styling to

present the angled text. The self is then split on the surface

and in the code: language fractures the self. Disabling the style

leaves an unbroken single line in the top-left displayed by the

default styles within the text. Removing the programmatic

transformation removes any meaning signified by the line’s

shape.

The line is above the rest of the poem, suppressed from the

interface text. The two modes of suppressing text include hiding

56

Benjamin Laird

the text stylistically, so the content is transformed to be invisible

(such as with the styling “display:none”), or preventing the text

from being rendered using HTML comments (between “<!--”

and “-->”). The text under the line is set as comments, meant

for reading but not for rendering. Glazier writes explicitly in

his poem “Mouseover” that “[a] document source is writing,

too”, an invitation to readers to read the work’s source code. As

demonstrated, the source is always present for HTML works and

always performing, even in the simplest sense of translation.

The fact that there is another layer acting upon the surface works

metaphorically here for how the self is typically presented. We

only present our outer selves to the world while the inner self

remains hidden. The code hidden in the comments, however, is

not acting on the surface. While it exists in the piece, it is never

represented. Equally, while the real exists as surface, the line

“the real self” only exists in the work’s code.

subsurface
“subsurface” is a layered encoding: literally encoded characters

at the HTML layer. In the surface text the work is fragmented,

while the initially presented interface text is what appears to be

a natural language text infected by a typographical (en)coding.

For this reason, it could fit Cayley’s second category of codework

in the way that it is written within the context of typographical

coding, and the third category at the HTML layer, whereby it

uses the letters of the HTML4-named entities to create words.

The letter shares its place as the smallest unit of composition

with the entities that required defined patterns in order to be

presented.

57

(en)coded poetry: read, write, execute

The oscillation between surface and subsurface flips between

readings and codings. The “sub” of the title is encoded leaving

only a visible title of “surface” (the sub being the symbol for

“subset of”, allowing another reading of the title as “subset of

surface”). The code pushes against the surface stylised by the

CSS to appear as protruding. Yet, the surface codes do not

clearly translate on the first interface text (the surface text) as

expected in English. The “&” read as “and” exists in the code

as “&”. The text within the poem plays on this form,

paralleling the entities as ingredients. Code is a recipe for the

realisation of an anticipated executed form.

In regards to HTML entities, Glazier classifies them as situations

“where resistance of coding, or its disruptive penetration into

text, give code a more arcane look” (109). In treating the code

as “[c]ode as text to be read as (if it were) natural language”,

the entities have been abused, separated from both their

meaning and verbose forms (“Time Code Language: New

Media Poetics and Programmed Signification” 317). At the code

level, “subsurface” presents itself as a work in the mode of more

common print-mediated works but still broken by “&” and “;”,

which are both required for the named entity to be rendered. To

read this layer as a more common form of poetry, the characters

would need to be pushed out of the reading, with the letter and

word forms foregrounded, while the intrusive characters were

pushed to the background.

Re(U)topia
“Re(U)topia” is an infinitely generating poem. On scrolling,

more text is generated so that new stanzas are created from a

list of unique words that occur in Gilbert Burnet’s translation

58

Benjamin Laird

of Thomas Mores’s Utopia. Each stanza is comprised of six

lines, with each line consisting of six words. “Re(U)topia” does

not, however, use the word frequencies or word combinations

within the original text. As such, the lines are random artificial

combinations of words producing meaning only in the reading.

A sense of unity is created by the slightly archaic nature of the

translation and the thematic word listing.

This work is, like “Machine State” and “TERMINAL”, a

combination of HTML, CSS and JavaScript. “Re(U)topia” is

another example of the hidden code within the work, as the text

of Utopia was processed by a Python script to obtain the word

listing. This code is entirely functional, a shortcut to what I could

have done manually, but still shows the grey areas where other

“codes” intrude into these works.

The attempt to reach or find a utopia is given over to the

computations of the poem. The poem, however, will not end

until the software or hardware it contains is unable to continue

processing the stanzas. Thus, the utopia is unattainable; it

cannot be reached, and yet each line promises more possibilities

for meaning.

TERMINAL
“TERMINAL” plays on and with the multiple meanings of

the word “terminal”. It is an end point but rarely acts like one:

in computing it is an interface for entering data, in illness a

death, and in transport an end of a journey although more often

a transition point (no-one permanently sleeps at an airport

terminal). In this way it both interacts with computational ideas

of the terminal literally and symbolically because the work is in

59

(en)coded poetry: read, write, execute

constant motion. The work is an end point when experienced on

screen, yet is never still.

The letter-board below the title “TERMINAL” was created as

two sets of letters that are then switched in time by JavaScript.

Its functions operate as a separate portion of the whole work.

The functions calculate the list of characters between the current

letter and next letter and then swap each letter along the list until

it arrives at a new letter. The timing difference between the top

and bottom set are intended to create a rotating sense, as is the

offset between the sets of letters. Below the faux flight board, the

list of phrases move up and down, depending on the location of

the arrow. They are able to create new longer lines even as they

exist as separate fragments.

The terminal displays the code, but the code is also used to

transform the stationary code into motion. Within this piece,

code is able to perform in a way beyond the merely metaphorical

layered sense, engaging in the temporal and the spatial,

through its hiding and ordering of letters and numbers. The

expression of the code is the end point (“terminal”) realised in

an extranoematic event. However, the extranoematic event is not

the end of the piece, but rather a transition to the reading of the

work. The real terminal is the reading of the work, which can

never be terminal, because the work will resurface while read

and even after being read. It is a transition that cannot stay still.

The code is necessary to the work as programming but also as

encoding. The rotation of the letters in the board suggests the

old flight information boards but like the boards that have now

replaced them there is no need to show the transitional letters.

The transition mimics the material constraints that existed in

those boards but that are now entirely artificial.

60

Benjamin Laird

The code in this piece is necessary to the work as programming

but also as encoding. The rotation of the letters on the board is

reminiscent of the old flight information boards, but as with the

boards that have now replaced them, there is no longer a need to

show the transitional letters. The transition mimics the material

constraints that existed in those boards but that are now entirely

artificial.

The act of reading “TERMINAL” below the static title is

disrupted by the constant movement of the text. The removal

and rearrangement of text is anchored thematically. While

narrative meaning is almost entirely erased by the movement,

the movement itself is an attempt to initiate a meaning from the

actualisation of the temporal and spatial. Terminals are places

of constant movement; the language of terminal, the movement

back and forth, become representative of that movement.

Machine State
This poem presents the reader with a set of “windows”. The

windows are meant to resemble an old Macintosh-like interface

but, as with the nostalgia it may evoke, there are differences,

such as the colour, which is not quite the same, nor is the

interaction method. It is a (mis)remembered experience.

The HTML code in “Machine State” structures the content of

the poem. Each poem fragment is placed within blocks of code

identified by their class as “cards”. The cards are marked up

as a list. At a code level it suggests a set of index cards, thus an

informational design. The CSS applied to the HTML is used

to display the “cards” as windows, while JavaScript is used to

define the window’s behaviour. The poem can only exist in the

61

(en)coded poetry: read, write, execute

presented form when all the code is active. It remains “readable”

however when the code is disabled.

There are multiple methods of reading “Machine State”, and the

state of each window is transitory at the interface layer. Each of

the windows allows the text to present three states. The first state

displayed is the mid-state. From this option the window can be

enlarged or closed. In the larger state, the text is transformed.

In the closed state, the text is unreadable. The text, though,

is always present in the source code; in fact, the code in this

example is artificially layering the text. The different windows

within “Machine State” also present different texts and modes of

text. The “State”, for instance, signifies both a condition and the

nation state. Each card has thesis and anti-thesis and a conflict

between its own state. The dialectic presents a metaphor for

reading the code as well as reading the poetic. As a result, code

can be read as an executable form or a literary form, with the

synthesis of these providing meaning from the work.

This is to show that code both acts as a symbolic layer and

also acts as a virtual layer. Like reading process, the window

of interest, what the reader reads, is foregrounded while the

presence of the other windows lurk at the edges. No reading

order is favoured between the windows. The reading event

occurs in the juxtaposition of the windows both internally in and

across. The extranoematic event requires reader participation to

realise the spatial dimensions of the work and is essential to the

reading that occurs.

“Machine State” transformed the most during its development.

Initial iterations of the piece divided a lyrical content from the

framework the code built. The poetry in each card was similar to

each other and while they addressed ideas of state they acted as

62

Benjamin Laird

separate works. Generated and textually experimental windows

were added when the idea of the state and the programmable was

broadened in this piece.

63

(en)coded poetry: read, write, execute

Conclusion

Poetry is code

Cordite Poetry Review

Code is, naturally, significant to the understanding of works in

programmable media. The reading of code has presented the

opportunity to view poetic works as capable of being read not

just in execution but also in context. While broken codeworks

do not work, they realise the potential to read code culturally as

well as functionally. Cayley’s categorisations of code, as discussed

here with regards to literary works, provide a means of defining

the way that code is understood.

Through the case studies and my own work, it seems code in

poetic works can have three forms of being read: in the surface

text due to execution (also referred to as the extranoematic

event), in the code against a literary aesthetic and in the code

against a computational aesthetic.

Writing code in a variety of methods in print and digital works

changed the way I thought about my practice. Although I had

written both print poetry and poetry in programmable media

prior to this project, and recognised that they stemmed from

similar traditions, I always treated both as separate practices.

64

Benjamin Laird

I saw the programmable works as challenging my functional

programming practice and the print works as a poetic linguistic

practice. While I appreciated the linguistic and literary play

in programmable works, I did not grasp the potential of the

programmable in print works.

The notion of the programmable as a method applicable to

textual manipulation acting on inscribed texts seems to make it

even more specific. By producing these ten texts, I understood

that my work in both print and programmable media are on a

continuum. More than that, I realised that the programmable

was crossing over into my print works as a method of writing the

text. The code, when written to perform a function when it is

read, changed my perspective of it as aspirationally executable.

The code pieces I wrote that used coding as context or a non-

functional method, such as “elemental positioning”, structured

the text rather than working programmably.

As an extension, investigating the programmable acting on the

literal as it does, that is, abstractly from the medium, would be a

fascinating topic.

65

(en)coded poetry: read, write, execute

Works Cited

Aarseth, Espen J. Cybertext: Perspectives on Ergodic Literature.

Baltimore [u.a.: Johns Hopkins Univ. Press, 1997. Print.

Bernstein, Charles. A Poetics. London England; Cambridge

Mass.: Harvard University Press, 1992. Print.

Cage, John. “John Cage on ‘Empty Words’ and the

Demilitarization of Language, in a Radio Interview,

August 8, 1974.” Alan Filreis n.d. Web. 17 Oct. 2012.

Cayley, John. “Screen Writing: A Practice-based , EuroRelative

Introduction to Digital Literature and Poetics.” Literary

Art in Digital Performance: Case Studies in New Media Art and

Criticism. Ed. Francisco J Ricardo. New York: Continuum

International Pub., 2009. Print.

---. “The Code Is Not the Text (Unless It Is the Text).” Electronic

Book Review. Electronic Book Review 10 Sept. 2002. Web.

3 Mar. 2012.

---. “Time Code Language: New media Poetics and Programmed

Signification.” New Media Poetics : Contexts, Technotexts, and

Theories. Ed. Adalaide Kirby Morris & Thomas Swiss.

Cambridge, Mass.; London: MIT Press, 2006. 307-333

Print.

Collis, Stephen. On the Material. Vancouver: Talonbooks, 2010.

Print.

66

Benjamin Laird

Cox, Geoff, Alex McLean, and Adrian Ward. “The Aesthetics of

Generative Code.” Web. 17 Jun. 2012.

Funkhouser, Chris. New Directions in Digital Poetry. London:

Continuum, 2012. Print.

Glazier, Loss Pequeño. Digital Poetics: The Making of E-poetries.

Tuscaloosa: University of Alabama Press, 2002. Print.

Hayles, N. Katherine. Electronic Literature: New Horizons for the

Literary. Notre Dame, Ind.: University of Notre Dame,

2008. Print.

---. My Mother Was a Computer: Digital Subjects and Literary Texts.

University Of Chicago Press, 2005. AZW.

---. “The Time of Digital Poetry: From Object to Event.”

New Media Poetics: Contexts, Technotexts, and Theories. Ed.

Adalaide Kirby Morris & Thomas Swiss. Cambridge,

Mass.; London: MIT Press, 2009. 181-209 Print.

---. “Traumas of Code.” Critical Digital Studies : A Reader. Ed.

Arthur Kroker & Marilouise Kroker. Toronto; Buffalo

[N.Y.]: University of Toronto Press, 2008. 25-44 Print.

Galloway, Alexander R. Protocol : How Control Exists After

Decentralization. Cambridge, Mass.: MIT Press, 2004.

Print.

Iser, Wolfgang. The Act of Reading : A Theory of Aesthetic Response.

Baltimore: Johns Hopkins University Press, 1980. Print.

“Issue: Explicit Markup to Semantically Express Poetic Forms.”

HTML WG Wiki. n.d. Web. 11 Aug. 2012.

67

(en)coded poetry: read, write, execute

Jones, Patrick. [How To Do Words With Things]. Daylesford, Vic.:

treeElbow, 2008. Print.

---. “Interview with Patrick Jones.” Ed. Jessica L Wilkinson.

Rabbit number 2 (2011): 132-154. Print.

---. “Step by Step.” Overland. Overland Winter 2012. Web. 17

Oct. 2012.

---. Words and Things : Concrete Poetry Supersigns Multiple Language.

Daylesford, Vic.: Reverie Press Publications, 2004. Web.

17 Oct. 2012.

Laird, Benjamin. “elemental positioning.” PDF.

---. “hangman.” PDF.

---. “I sing the sound electric.” PDF.

---. “Machine State.” Web. 17 Oct. 2012.

---. “rendering.” PDF

---. “the representation of self.” Web. 17 Oct. 2012.

---. “Re(U)topia.” Web. 17 Oct. 2012.

---. “Sognare La Tromba / Suonare La Tromba.” PDF.

---. “subsurface.” Web. 17 Oct. 2012.

---. “TERMINAL.” Web. 17 Oct. 2012.

Leong, Michael. e.s.p. : poems. Columbus, OH: Silenced Press,

2009. Print.

Lutz, Mark. Programming Python. Sebastopol, CA: O’Reilly, 2006.

Print.

68

Benjamin Laird

Marino, Mark. “Critical Code Studies.” Electronic Book Review. 4

Dec. 2006. Web. 17 Oct. 2012.

Massumi, Brian. Semblance and Event: Activist Philosophy and the

Occurrent Arts. The MIT Press, 2011. Print.

Mateas, Michael and Nick Montfort. “A Box, Darkly:

Obfuscation, Weird Languages, and Code Aesthetics”

Digital Arts and Culture. Copenhagen, 2005.

Mez. “_cross.ova.ing 4rm.blog.2.log 07/08 XXtracts_.” Electronic

Literature Collection Volume 2. February 2011 Web. 22 Jun.

2012.

Nelson, Jason. “Dreamaphage.” Electronic Literature Collection

Volume 1. October 2006 Web. 22 Jun. 2012.

---. “Spear Talks: Jason Nelson.” The Josh Spear Blog 2 Feb. 2010

Web. 3 Oct. 2012.

---. “This Is Almost Everything I’ve Created.” secret techolog y n.d.

Web. 22 Jun. 2012.

Raley, Rita. “Code.surface || Code.depth.” Dichtung Digital.

2006. Web. 17 Aug. 2012.

Simanowski, Roberto. Digital Art and Meaning: Reading Kinetic

Poetry, Text Machines, Mapping Art, and Interactive Installations.

Minneapolis, MN: University of Minnesota Press, 2011.

Print.

69

(en)coded poetry: read, write, execute

Strickland, Stephanie. “Moving Through Me as I Move: A

Paradigm for Interaction.” First Person : New Media as Story,

Performance, and Game. Ed. Noah Wardrip-Fruin & Pat

Harrigan. Cambridge, Mass.: MIT Press, 2004. 183-191

Print.

Williams, William Carlos. The Collected Poems of William Carlos

Williams. Vol. 2. 1939-1962. Ed. Christopher J MacGowan.

New York: New Directions, 2001. Print.

Zaher, Maged. Portrait of the Poet as an Engineer. Boston, Mass.:

Pressed Wafer, 2009. Print.

